On Affine Invariant Descent Directions

نویسندگان

  • Yu-Hong Dai
  • Florian Jarre
  • Felix Lieder
چکیده

This paper explores the existence of affine invariant descent directions for unconstrained minimization. While there may exist several affine invariant descent directions for smooth functions f at a given point, it is shown that for quadratic functions there exists exactly one invariant descent direction in the strictly convex case and generally none in the nondegenerate indefinite case. These results can be generalized to smooth nonlinear functions and have implications regarding the initialization of minimization algorithms. They stand in contrast to recent works on constrained convex and nonconvex optimization for which there may exist an affine invariant framework that depends on the feasible set.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computationally Easy Outlier Detection via Projection Pursuit with Finitely Many Directions

Outlier detection methods are fundamental to all of data analysis. They are desirably robust, affine invariant, and computationally easy in any dimension. The powerful projection pursuit approach yields the “projection outlyingness”, which is affine invariant and highly robust and does not impose ellipsoidal contours like the Mahalanobis distance approach. However, it is highly computationally ...

متن کامل

Polyhedral divisors and torus actions of complexity one over arbitrary fields

We show that the presentation of affine T-varieties of complexity one in terms of polyhedral divisors holds over an arbitrary field. We also describe a class of multigraded algebras over Dedekind domains. We study how the algebra associated to a polyhedral divisor changes when we extend the scalars. As another application, we provide a combinatorial description of affine G-varieties of complexi...

متن کامل

Extensions of the Hestenes-Stiefel and Polak-Ribiere-Polyak conjugate gradient methods with sufficient descent property

Using search directions of a recent class of three--term conjugate gradient methods, modified versions of the Hestenes-Stiefel and Polak-Ribiere-Polyak methods are proposed which satisfy the sufficient descent condition. The methods are shown to be globally convergent when the line search fulfills the (strong) Wolfe conditions. Numerical experiments are done on a set of CUTEr unconstrained opti...

متن کامل

Convex functions on symmetric spaces and geometric invariant theory for weighted configurations on flag manifolds

3 Convex functions on symmetric spaces 11 3.1 Geometric preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.1 Metric spaces with curvature bounds . . . . . . . . . . . . . . 11 3.1.2 Hadamard spaces . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1.3 Symmetric spaces of noncompact type . . . . . . . . . . . . . 15 3.1.4 Auxiliary results . . . . . . . . . . . . . . . ....

متن کامل

Minimization with the Affine Normal Direction

In this paper, we consider minimization of a real-valued function f over R and study the choice of the affine normal of the level set hypersurfaces of f as a direction for minimization. The affine normal vector arises in affine differential geometry when answering the question of what hypersurfaces are invariant under unimodular affine transformations. It can be computed at points of a hypersur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017